3.493 \(\int \sqrt{\cos (c+d x)} (a+a \sec (c+d x))^2 (A+B \sec (c+d x)) \, dx\)

Optimal. Leaf size=120 \[ \frac{4 a^2 (3 A+2 B) \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )}{3 d}+\frac{2 a^2 (3 A+5 B) \sin (c+d x)}{3 d \sqrt{\cos (c+d x)}}-\frac{4 a^2 B E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 B \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{3 d \cos ^{\frac{3}{2}}(c+d x)} \]

[Out]

(-4*a^2*B*EllipticE[(c + d*x)/2, 2])/d + (4*a^2*(3*A + 2*B)*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*a^2*(3*A + 5
*B)*Sin[c + d*x])/(3*d*Sqrt[Cos[c + d*x]]) + (2*B*(a^2 + a^2*Cos[c + d*x])*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/
2))

________________________________________________________________________________________

Rubi [A]  time = 0.350451, antiderivative size = 120, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.212, Rules used = {2954, 2975, 2968, 3021, 2748, 2641, 2639} \[ \frac{4 a^2 (3 A+2 B) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 a^2 (3 A+5 B) \sin (c+d x)}{3 d \sqrt{\cos (c+d x)}}-\frac{4 a^2 B E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 B \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{3 d \cos ^{\frac{3}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x]),x]

[Out]

(-4*a^2*B*EllipticE[(c + d*x)/2, 2])/d + (4*a^2*(3*A + 2*B)*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*a^2*(3*A + 5
*B)*Sin[c + d*x])/(3*d*Sqrt[Cos[c + d*x]]) + (2*B*(a^2 + a^2*Cos[c + d*x])*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/
2))

Rule 2954

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.
) + (f_.)*(x_)])^(p_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Sin[e + f*x])^(p - m - n)*(b + a*Sin[e + f*x])^m*(
d + c*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] && I
ntegerQ[m] && IntegerQ[n]

Rule 2975

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b^2*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*S
in[e + f*x])^(n + 1))/(d*f*(n + 1)*(b*c + a*d)), x] - Dist[b/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x])
^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n +
 1) - B*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d
, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n]
 || EqQ[c, 0])

Rule 2968

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3021

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m +
 1)*(a^2 - b^2)), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B + a*
C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e,
 f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \sqrt{\cos (c+d x)} (a+a \sec (c+d x))^2 (A+B \sec (c+d x)) \, dx &=\int \frac{(a+a \cos (c+d x))^2 (B+A \cos (c+d x))}{\cos ^{\frac{5}{2}}(c+d x)} \, dx\\ &=\frac{2 B \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{2}{3} \int \frac{(a+a \cos (c+d x)) \left (\frac{1}{2} a (3 A+5 B)+\frac{1}{2} a (3 A-B) \cos (c+d x)\right )}{\cos ^{\frac{3}{2}}(c+d x)} \, dx\\ &=\frac{2 B \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{2}{3} \int \frac{\frac{1}{2} a^2 (3 A+5 B)+\left (\frac{1}{2} a^2 (3 A-B)+\frac{1}{2} a^2 (3 A+5 B)\right ) \cos (c+d x)+\frac{1}{2} a^2 (3 A-B) \cos ^2(c+d x)}{\cos ^{\frac{3}{2}}(c+d x)} \, dx\\ &=\frac{2 a^2 (3 A+5 B) \sin (c+d x)}{3 d \sqrt{\cos (c+d x)}}+\frac{2 B \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{4}{3} \int \frac{\frac{1}{2} a^2 (3 A+2 B)-\frac{3}{2} a^2 B \cos (c+d x)}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{2 a^2 (3 A+5 B) \sin (c+d x)}{3 d \sqrt{\cos (c+d x)}}+\frac{2 B \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}-\left (2 a^2 B\right ) \int \sqrt{\cos (c+d x)} \, dx+\frac{1}{3} \left (2 a^2 (3 A+2 B)\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx\\ &=-\frac{4 a^2 B E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{4 a^2 (3 A+2 B) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 a^2 (3 A+5 B) \sin (c+d x)}{3 d \sqrt{\cos (c+d x)}}+\frac{2 B \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}\\ \end{align*}

Mathematica [C]  time = 6.42647, size = 736, normalized size = 6.13 \[ \frac{B \csc (c) \cos ^3(c+d x) \sec ^4\left (\frac{c}{2}+\frac{d x}{2}\right ) (a \sec (c+d x)+a)^2 (A+B \sec (c+d x)) \left (\frac{\tan (c) \sin \left (\tan ^{-1}(\tan (c))+d x\right ) \text{HypergeometricPFQ}\left (\left \{-\frac{1}{2},-\frac{1}{4}\right \},\left \{\frac{3}{4}\right \},\cos ^2\left (\tan ^{-1}(\tan (c))+d x\right )\right )}{\sqrt{\tan ^2(c)+1} \sqrt{1-\cos \left (\tan ^{-1}(\tan (c))+d x\right )} \sqrt{\cos \left (\tan ^{-1}(\tan (c))+d x\right )+1} \sqrt{\cos (c) \sqrt{\tan ^2(c)+1} \cos \left (\tan ^{-1}(\tan (c))+d x\right )}}-\frac{\frac{\tan (c) \sin \left (\tan ^{-1}(\tan (c))+d x\right )}{\sqrt{\tan ^2(c)+1}}+\frac{2 \cos ^2(c) \sqrt{\tan ^2(c)+1} \cos \left (\tan ^{-1}(\tan (c))+d x\right )}{\sin ^2(c)+\cos ^2(c)}}{\sqrt{\cos (c) \sqrt{\tan ^2(c)+1} \cos \left (\tan ^{-1}(\tan (c))+d x\right )}}\right )}{2 d (A \cos (c+d x)+B)}-\frac{A \csc (c) \cos ^3(c+d x) \sec ^4\left (\frac{c}{2}+\frac{d x}{2}\right ) (a \sec (c+d x)+a)^2 (A+B \sec (c+d x)) \sqrt{1-\sin \left (d x-\tan ^{-1}(\cot (c))\right )} \sqrt{\sin (c) \left (-\sqrt{\cot ^2(c)+1}\right ) \sin \left (d x-\tan ^{-1}(\cot (c))\right )} \sqrt{\sin \left (d x-\tan ^{-1}(\cot (c))\right )+1} \sec \left (d x-\tan ^{-1}(\cot (c))\right ) \text{HypergeometricPFQ}\left (\left \{\frac{1}{4},\frac{1}{2}\right \},\left \{\frac{5}{4}\right \},\sin ^2\left (d x-\tan ^{-1}(\cot (c))\right )\right )}{d \sqrt{\cot ^2(c)+1} (A \cos (c+d x)+B)}-\frac{2 B \csc (c) \cos ^3(c+d x) \sec ^4\left (\frac{c}{2}+\frac{d x}{2}\right ) (a \sec (c+d x)+a)^2 (A+B \sec (c+d x)) \sqrt{1-\sin \left (d x-\tan ^{-1}(\cot (c))\right )} \sqrt{\sin (c) \left (-\sqrt{\cot ^2(c)+1}\right ) \sin \left (d x-\tan ^{-1}(\cot (c))\right )} \sqrt{\sin \left (d x-\tan ^{-1}(\cot (c))\right )+1} \sec \left (d x-\tan ^{-1}(\cot (c))\right ) \text{HypergeometricPFQ}\left (\left \{\frac{1}{4},\frac{1}{2}\right \},\left \{\frac{5}{4}\right \},\sin ^2\left (d x-\tan ^{-1}(\cot (c))\right )\right )}{3 d \sqrt{\cot ^2(c)+1} (A \cos (c+d x)+B)}+\frac{\cos ^{\frac{7}{2}}(c+d x) \sec ^4\left (\frac{c}{2}+\frac{d x}{2}\right ) (a \sec (c+d x)+a)^2 (A+B \sec (c+d x)) \left (\frac{\sec (c) \sec (c+d x) (3 A \sin (d x)+B \sin (c)+6 B \sin (d x))}{6 d}-\frac{\csc (c) \sec (c) (A \cos (2 c)-A-4 B)}{4 d}+\frac{B \sec (c) \sin (d x) \sec ^2(c+d x)}{6 d}\right )}{A \cos (c+d x)+B} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x]),x]

[Out]

(Cos[c + d*x]^(7/2)*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x])*(-((-A - 4*B + A*Cos[2*c]
)*Csc[c]*Sec[c])/(4*d) + (B*Sec[c]*Sec[c + d*x]^2*Sin[d*x])/(6*d) + (Sec[c]*Sec[c + d*x]*(B*Sin[c] + 3*A*Sin[d
*x] + 6*B*Sin[d*x]))/(6*d)))/(B + A*Cos[c + d*x]) - (A*Cos[c + d*x]^3*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/
4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x])*Sec[d*x - Ar
cTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]
*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*(B + A*Cos[c + d*x])*Sqrt[1 + Cot[c]^2]) - (2*B*Cos[c + d*x]^3*Csc[c]
*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2
*(A + B*Sec[c + d*x])*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*
Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(B + A*Cos[c + d*x])*Sqrt[1 + Cot
[c]^2]) + (B*Cos[c + d*x]^3*Csc[c]*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x])*((Hypergeo
metricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*
x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]
^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcT
an[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2
]]))/(2*d*(B + A*Cos[c + d*x]))

________________________________________________________________________________________

Maple [B]  time = 2.253, size = 513, normalized size = 4.3 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^2*(A+B*sec(d*x+c))*cos(d*x+c)^(1/2),x)

[Out]

-4/3*(6*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(A+2*B)*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4-(
-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(3*A+7*B)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-2*(sin(1
/2*d*x+1/2*c)^2)^(1/2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(
3*A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+2*B*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*B*EllipticE(cos(1/2*d*x+
1/2*c),2^(1/2)))*sin(1/2*d*x+1/2*c)^2+3*A*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/
2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+2*B*(sin(1/2*d*x+1/2*c)^2
)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/
2*d*x+1/2*c)^2)^(1/2)+3*B*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2
*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*a^2/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x
+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)^(3/2)/sin(1/2*d*x+1/2*c)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \sec \left (d x + c\right ) + A\right )}{\left (a \sec \left (d x + c\right ) + a\right )}^{2} \sqrt{\cos \left (d x + c\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2*(A+B*sec(d*x+c))*cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)^2*sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (B a^{2} \sec \left (d x + c\right )^{3} +{\left (A + 2 \, B\right )} a^{2} \sec \left (d x + c\right )^{2} +{\left (2 \, A + B\right )} a^{2} \sec \left (d x + c\right ) + A a^{2}\right )} \sqrt{\cos \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2*(A+B*sec(d*x+c))*cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

integral((B*a^2*sec(d*x + c)^3 + (A + 2*B)*a^2*sec(d*x + c)^2 + (2*A + B)*a^2*sec(d*x + c) + A*a^2)*sqrt(cos(d
*x + c)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**2*(A+B*sec(d*x+c))*cos(d*x+c)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \sec \left (d x + c\right ) + A\right )}{\left (a \sec \left (d x + c\right ) + a\right )}^{2} \sqrt{\cos \left (d x + c\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2*(A+B*sec(d*x+c))*cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)^2*sqrt(cos(d*x + c)), x)